A Characterization of Gorenstein Hilbert Functions in Codimension Four with Small Initial Degree
نویسندگان
چکیده
The main goal of this paper is to characterize the Hilbert functions of all (artinian) codimension 4 Gorenstein algebras that have at least two independent relations of degree four. This includes all codimension 4 Gorenstein algebras whose initial relation is of degree at most 3. Our result shows that those Hilbert functions are exactly the so-called SI-sequences starting with (1, 4, h2, h3, ...), where h4 ≤ 33. In particular, these Hilbert functions are all unimodal. We also establish a more general unimodality result, which relies on the values of the Hilbert function not being too big, but is independent of the initial degree.
منابع مشابه
When Are There Infinitely Many Irreducible Elements in a Principal Ideal Domain?
Publications in Refereed Journals 1. I numeri di Fermat, Periodico di Matematiche, VII, 5 (1998), no. 2-3, 63–68 2. Some observations on the statistical independence and the distribution of zeros in the Selberg Class, Rend. Circ. Mat. Palermo (2), 52 (2003), no. 2, 211–223 3. Extending the idea of compressed algebra to arbitrary socle-vectors, J. Algebra 270 (2003), no. 1, 181–198 4. When are T...
متن کاملThe Strength of the Weak Lefschetz Property
We study a number of conditions on the Hilbert function of a level artinian algebra which imply the Weak Lefschetz Property (WLP). Possibly the most important open case is whether a codimension 3 SI-sequence forces the WLP for level algebras. In other words, does every codimension 3 Gorenstein algebra have the WLP? We give some new partial answers to this old question: we prove an affirmative a...
متن کاملHilbert Functions of Irreducible Arithmetically Gorenstein Schemes
In this paper we compute the Hilbert functions of irreducible (or smooth) and reduced arithmetically Gorenstein schemes that are twisted anti-canonical divisors on arithmetically Cohen-Macaulay schemes. We also prove some folklore results characterizing the Hilbert functions of irreducible standard determinantal schemes, and we use them to produce a new class of functions that occur as Hilbert ...
متن کاملComponents of the Space Parametrizing Graded Gorenstein Artin Algebras with a given Hilbert Function
We give geometric constructions of families of graded Gorenstein Artin algebras, some of which span a component of the space Gor(T ) parametrizing Gorenstein Artin algebras with a given Hilbert function T . This gives a lot of examples where Gor(T ) is reducible. We also show that the Hilbert function of a codimension four Gorenstein Artin algebra can have an arbitrarily long constant part with...
متن کاملOn the Weak Lefschetz Property for Artinian Gorenstein Algebras of Codimension Three
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1, 3, 6, 6, 3, 1), we give a complete answer in every characteristic by translating the problem to one of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008